Synthesis of Polycyclic Cyclobutane Derivatives by Tandem Intramolecular Michael-Aldol Reaction under Two Complementary Conditions: TBDMSOTf-Et ${ }_{3} \mathrm{~N}$ and TMSI-(TMS) 2 NH

Masataka Ihara, ${ }^{\dagger}$ Takahiko Taniguchi, ${ }^{\dagger}$ Kei Makita, ${ }^{\dagger}$ Michiko Takano, ${ }^{\dagger}$ Masaru Ohnishi, ${ }^{\dagger}$ Nobuaki Taniguchi, ${ }^{\dagger}$ Keiichiro Fukumoto, ${ }^{*}{ }^{\dagger}$ and Chizuko Kabuto ${ }^{\ddagger}$
Contribution from Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan, and Instrumental Analysis Center for Chemistry, Faculty of Science, Tohoku University, Aobayama, Sendai 980, Japan

Received March 29, 1993

Abstract

The treatment of α, β-unsaturated esters having a ketone function at an appropriate position with either TBDMSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ or TMSI in the presence of (TMS) ${ }_{2} \mathrm{NH}$ provided, via a tandem intramolecular Michael-aldol reaction sequence, several different types of cyclobutane derivatives. The two reaction conditions were complementary. Tricyclo[4.2.1.0 ${ }^{3.8}$]nonanes 34 and 55, tricyclo[5.1.1.0 $0^{4.8}$]nonane 40, tricyclo[5.4.0.0 ${ }^{3.7}$] undecane 51, tetracyclo [5.4.0.0 ${ }^{3.7} .0^{9.11}$]undecane 45, and the bicyclo[3.2.0]heptanes 56,57, and 58, which have structures either partially or completely similar to those of endiandric acids A (1a), B (1b), and C (2), trihydroxydecipiadiene (3), lintenone (4), italicene (5), and filifolone (6), were stereoselectively synthesized by the tandem reaction.

A number of polycyclic compounds possessing a cyclobutane, such as endiandric acids A (1a), ${ }^{1}$ B (1b), ${ }^{1}$ and C (2), ${ }^{1}$ trihydroxydecipiadiene (3), ${ }^{2}$ lintenone (4), ${ }^{3}$ italicene (5), ${ }^{4}$ and filifolone (6), ${ }^{5}$ are found in nature (Chart I). Among the synthetic methods available for the synthesis of cyclobutanes, [2+2] cycloaddition is the most commonly used. ${ }^{6}$ As an extension of our study of the intramolecular double Michael reaction, ${ }^{7-10}$ we envisaged the formation of polycyclic ring systems fused to a cyclobutane by

[^0]Chart I

1a: $n=0$
1b: $n=1$

3

5

2

4

6
the tandem intramolecular Michael-aldol reaction of α, β unsaturated esters carrying a ketone function at an appropriate position. For example, the partial structure 8 of endiandric acid C (2) could be constructed from the γ-substituted cyclohexanone 7, while the frameworks 10 and 12 of trihydroxydecipiadiene (3) and italicene (5) could be formed from the β - and α-substituted cyclohexanones 9 and 11 , respectively. Furthermore, the skeleton 14 of filifolone (6) could be assembled from the keto ester 13 (see Scheme I). The key to achieving these transformations is the trapping of the hydroxy anion formed by the tandem reaction to drive the aldol reaction to completion. Here we report a novel construction of polycyclic cyclobutanes by the above approach,

Scheme I. Plan for the Construction of Polycyclic Systems Fused to a Cyclobutane

carried out under two different conditions, which are complementary. ${ }^{11}$

Results and Discussion

Preparation of Substrates for Tandem Intramolecular MichaelAldol Reaction. The requisite α, β-unsaturated esters, functionalized with a keto group, were prepared using standard chemistry as outlined in Scheme II. The γ-substituted cyclohexanone 7 was synthesized from phenethyl alcohol 15 in four steps. The E and Z-isomers of 7 , formed in a $15: 1$ ratio, were readily separated by chromatography.

The synthesis of β-substituted cyclohexanone 18 was started by conjugate addition ${ }^{12}$ to the enone $16 .{ }^{13}$ Similarly, the cyclopentanone derivative 22 was prepared from 19.14 Deprotection of the acetal group was carried out during the alcohol 21 stage in order to avoid an intramolecular aldol reaction. The Wittig reaction using a stabilized ylide, followed by oxidation with the Dess-Martin periodinane, ${ }^{15}$ provided a separable $18: 1$ mixture of (E) - and (Z) - 22 .

Bicyclo[3.1.0]hexanone 28 was synthesized as an α^{\prime}-blocked α-substituted cyclohexanone derivative. After allylation of cyclohexanone, α-hydroxylation ${ }^{16}$ of the resulting ketone gave 24, which was subjected to oxidative cleavage with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in MeOH . The derived olefin 25 was converted into 27 via addition

[^1]Scheme II. Preparation of Substrates for Tandem Intramolecular Michael-Aldol Reaction ${ }^{a}$

[^2]Scheme III. Tandem Intramolecular Michael-Aldol Reaction Using TBDMSOTf-Et ${ }_{3} \mathrm{~N}^{a}$

36
37
$\mathrm{e}\left[\begin{array}{l}\text { 38; } R=\text { TBDMS } \\ -39 ; R=H\end{array}\right.$

28

g $\left[\begin{array}{c}47 ; R=H \\ -48: R=A C\end{array}\right.$
${ }^{a}$ Materials and conditions: (a) TBDMSOTf, $\mathrm{Et}_{3} \mathrm{~N}$; (b) $\mathrm{LiN}(\mathrm{TMS})_{2}$; (c) $\mathrm{ZnCl}_{2}, \mathrm{TMSCl}, \mathrm{Et}_{3} \mathrm{~N}$, heat, then dilute HClO_{4}; (d) DIBALH; (e) $\mathrm{Bu}_{4}{ }_{4} \mathrm{NF}$; (f) dilute AcOH ; (g) $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine.
of a carbene. ${ }^{17}$ The unsaturated ester 28 was obtained as a 7:1 mixture of two diastereoisomers, separable by high-performance liquid chromatography (HPLC).

The α^{\prime}-unblocked α-substituted cyclohexanones 11 were prepared from 29. The E-unsaturated ester 11 was obtained using the ordinary Wittig reaction, while (Z)-11 was selectively synthesized by Still's method. ${ }^{18}$

Keto esters 13 and 33 were prepared from ϵ-caprolactone 31 and its methylated derivative 32^{19} in four steps, respectively.

Tandem Intramolecular Michael-Aldol Reaction. Treatment with TBDMSOTf-Et ${ }_{3} \mathrm{~N}$. The tandem reaction of the symmetrical ketone 7 to afford cyclobutane 8, which has the partial framework of 2 , was investigated first (Scheme III). The desired cyclization was achieved upon treatment with TBDMSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N},{ }^{10,20}$ which gave 34 in 48% yield and the silyl enol ether 35 in 49% yield. The same compound 34 was obtained in 47%

[^3] 25, 137-147.
(18) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405-4408.
(19) Ihara, M.; Suzuki, S.; Taniguchi. N.: Fukumoto, K.; Kabuto. C. J. Chem. Soc.. Perkin Trans. 1 1992, 2527-2535.

Scheme IV. Treatment of Keto Ester 11 with TBDMSOTf- $\mathrm{Et}_{3} \mathrm{~N}$

yield from the Z-isomer of 7 under similar reaction conditions. Further treatment of the silyl enol ether 35 with TBDMSOTf and $\mathrm{Et}_{3} \mathrm{~N}$ provided 34 in a similar yield. These results indicate a stepwise process.

Reaction of 7 with $\operatorname{LiN}(T M S)_{2}{ }^{8}$ in THF gave a $3: 1$ mixture of the intramolecular Michael adducts 36 and 37 , which were also obtained in a $10: 1$ ratio by heating 7 with $\mathrm{ZnCl}_{2}, \mathrm{TMSCl}$, and $\mathrm{Et}_{3} \mathrm{~N}^{9}, 21$ in toluene in a sealed tube at $160{ }^{\circ} \mathrm{C}$ for 17 h , followed by treatment with acid. Reaction of 34 with dilute acetic acid caused deprotection of the TBSDMS group accompanied by a retro aldol reaction, affording 37 as a single stereoisomer. This latter result is consistent with the cyclobutane structure of 34. The TBDMS group could be removed without fragmentation of the cyclobutane ring by first reducing the ester to the primary alcohol with DIBALH, followed by treatment with $\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{NF}$. Thus, 34 was transformed into diol 39 in 78% overall yield.

Treatment of the β-substituted cyclohexanone 18 with TBDMSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ provided no cyclobutane derivative, perhaps a consequence of steric hindrance with the gem-dimethyl group. However, the desired cyclization of the corresponding cyclopentanone 22 proceeded to some extent. Upon its addition to a refluxing solution of TBDMSOTf and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by reflux for $15 \mathrm{~min}, \mathbf{4 0}$ was obtained in 20% yield. It was noteworthy that the silyl enol ether 41 with a deconjugated ester was also isolated in 32% yield from this reaction. The Z-isomer of 22 was also transformed into 40 in 11% yield together with $\mathbf{4 1}$ in 45% yield. The TBDMS group of 40 was removed with $\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{NF}$ (66% yield) to give 43 after DIBALH reduction (86% yield) of the ester. As observed for keto ester 7, heating (E)-22 with $\mathrm{ZnCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, and TMSCl in a sealed tube at $160^{\circ} \mathrm{C}$ for 12 h , followed by acidic treatment, furnished a $1: 1.5$ diastereomeric mixture of the intramolecular Michael adduct 44 in 48% yield.

The tandem reaction of cyclopropane derivative 28 took place rapidly and quantitatively upon treatment of either diastereoisomer with TBDMSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ to produce 45 as a single stereoisomer. The stereochemistry of 45 was determined by observation of NOEs between the CH_{2} group attached to $\mathrm{C}(2)$ and the cyclopropyl H at $\mathrm{C}(11)$ and between the $\mathrm{Bu}^{\mathrm{t}} \mathrm{Me}_{2} \mathrm{SiO}$ at $\mathrm{C}(1)$ and the cyclobutyl H at $\mathrm{C}(2)$ of 46 , formed by reduction of $\mathbf{4 5}$ with DIBALH. Formation of the tetracyclo[5.4.0.0 ${ }^{3.7} \cdot 0^{9,11}$] undecane ring system 45 is remarkably facile, as evidenced by the conversion in 39% yield of 28 into 47 upon heating with $\mathrm{ZnCl}_{2}, \mathrm{Et}_{3} \mathrm{~N}$, and TMSCl in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by treatment with acid. The presence of an alcohol in $\mathbf{4 7}$ was confirmed by its conversion into the acetate 48 in 75% yield.

In the above cases, regioselectivity during enol silane formation was not an issue since either an α^{\prime}-blocked or symmetrical ketone was used as the substrate. In order to establish a widely applicable methodology, the tandem reaction of ketones possessing two different types of hydrogens at the α - and α^{\prime}-positions was further investigated. Exposure of 11 to TBDMSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the exclusive formation of the kinetically controlled silyl enol ethers 49, accompanied by deconjugation of the ester (Scheme IV). Two requirements must therefore be met to achieve the desired transformation: (i)

[^4]

Figure 1. ORTEP representation of diol 52.
regioselective formation of the thermodynamically controlled enolate and (ii) trapping of the hydroxy anion formed in the aldol reaction. These requirements can be met as described in the following section.

Treatment with TMSI-(TMS) $\mathbf{2}_{\mathbf{N H}} \mathbf{N H}$. Upon treatment with TMSI in the presence of excess (TMS) ${ }_{2} \mathrm{NH}^{22}$ at room temperature, 11 was completely converted into a mixture of the thermodynamically controlled silyl enol ether 50 and the tricyclic product 51 within 30 min . The ratio of $\mathbf{5 1}$ to $\mathbf{5 0}$ gradually increased with time, and the yield of 51 was shown to be solvent dependent. After the reaction had been run for $7 \mathrm{~h}, 51$ was obtained in $70,64,14$, and 11% yield from (E)-11 in reactions carried out in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CCl}_{4}$, and $\mathrm{ClHC}=\mathrm{CCl}_{2}$, respectively. The same product (51) was produced in 68% yield by treatment of $(Z)-11$ with TMSI in the presence of (TMS) $)_{2} \mathrm{NH}$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$. These results again support a stepwise mechanism through a common intermediate. The stereo structure of 51 was assigned on the basis of a comparison of its spectral data with those from compounds 45 and 47 . The bent cyclobutane structure was firmly established by X-ray crystallographic analysis after transformation into the diol 52 (Figure 1). The diol 52 was further converted into the methyl compound 54 in two steps (Scheme V).

Treatment of 7 with TMSI and (TMS) ${ }_{2}$ NH provided tricyclo[4.2.1.0 ${ }^{3.8}$]nonane 55, which was transformed into 39 . These conditions gave a modest improvement in yield (57\%), compared to the use of TBDMSOTf- $\mathrm{Et}_{3} \mathrm{~N}$ to give 34 (48%).

The bicyclic compound 56 was the major product along with three other stereoisomers in a 6.8:1.3:1:1 ratio in 83% yield from the acyclic unsaturated ester 13. A mixture of two diastereoisomers of the corresponding angularly methylated compounds 57 and 58 in a $2: 1$ ratio was obtained in 91% yield by the reaction of $\mathbf{3 3}$ under the same conditions. The relative stereochemistry of the products 56,57 , and 58 was determined by observation of NOEs between hydrogens as shown in Scheme V. Both 56 and 57 were converted into diols 59 and 60 , respectively. Treatment of $\mathbf{1 3}$ or $\mathbf{3 3}$ with TBDMSOTf in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ produced only the corresponding deconjugated silyl enol ethers.

Thus, the carbon skeleton of italicene (5) ${ }^{4}$ and filifolone (6) ${ }^{5}$ and the partial skeletons of endiandric acids A (1a), ${ }^{1}$ B (1b), ${ }^{1}$ and C (2), ${ }^{1}$ trihydroxydecipiadiene (3), ${ }^{2}$ and lintenone (4) ${ }^{3}$ were readily constructed by the above procedure. The tandem intramolecular reaction employing two complementary conditions, TBDMSOTf$\mathrm{Et}_{3} \mathrm{~N}$ and TMSI-(TMS) ${ }_{2} \mathrm{NH}$, provides a useful approach for preparation of a variety of polycyclic compounds fused to a cyclobutane ring.

Experimental Section

General Procedure. All reactions were carried out under a positive atmosphere of dry Ar unless otherwise indicated. Solvents were distilled (22) Miller, R. D.; McKean, D. R. Synthesis 1979, 730-732.

Scheme V. Tandem Intramolecular Michael-Aldol Reaction Using TMSI-(TMS) ${ }_{2} \mathrm{NH}^{a}$

${ }^{a}$ Materials and conditions: (a) TMSI, (TMS) ${ }_{2} \mathrm{NH}$; (b) DIBALH; (c) $\mathrm{Bu}_{4}{ }_{4} \mathrm{NF}$; (d) $(\mathrm{PhS})_{2}, \mathrm{Bu}_{3}{ }_{3} \mathrm{P}$, pyridine; (e) Li , liquid $\mathrm{NH}_{3}, \mathrm{Bu}{ }^{\mathrm{O} O H}$.
prior to use: THF, DME, $\mathrm{Et}_{2} \mathrm{O}$, benzene, and toluene were freshly distilled from Na benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN were distilled from CaH_{2} and kept over $4-\AA$ molecular sieves; HMPA was distilled from Na benzophenone under reduced pressure and kept over $4-\AA$ molecular sieves. Unless otherwise noted, all extracts were dried over MgSO_{4} and the solvent was removed by rotary evaporation under reduced pressure. Silica gel column chromatography was carried out with Merck Kieselgel 60 Art. 7734, while Merck Kieselgel 60 Art. 9835 was used for flash chromatography. HPLC was carried out using a Gilson HPLC system (Model 302/303) equipped with a $10 \times 250 \mathrm{~mm}$ column of Dynamax Microsorb silica ($5 \mu \mathrm{~m}$) and monitored by using UV and refractive index detectors.
4-[(2Z)-and (2E)-3-(Methoxycarbonyl)-2-propenyl]cyclohexan-1-one (7). To a solution of p-methoxyphenethyl alcohol ($\mathbf{1 5)}$ ($437 \mathrm{mg}, 3.11$ mmol), But OH ($2.5 \mathrm{~mL}, 26.51 \mathrm{mmol}$), and THF (1.5 mL) in liquid NH_{3} $(15 \mathrm{~mL})$ was added $\mathrm{Li}(206 \mathrm{mg}, 29.7 \mathrm{mmol})$. After 2 h of stirring, $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(7.5 \mathrm{~mL})$ were added to the reaction mixture. After having been allowed to stand overnight at ambient temperature, the mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and benzene. The organic
phase was washed with brine, dried, and evaporated to give an oil, which was used in the following reaction.

The above product was treated for 4 h at $40^{\circ} \mathrm{C}$ with a mixture of $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2}(392 \mathrm{mg}, 3.11 \mathrm{mmol})$ and $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL})$. After neutralization with $\mathrm{NaHCO}_{3}(260 \mathrm{mg}, 3.11 \mathrm{mmol})$, the mixture was concentrated. The residue was partitioned between brine and AcOEt. The organic phase was washed with brine, dried, and evaporated. The residue was purified by flash chromatography, with acetone-benzene ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent, to afford β, γ-unsaturated ketone ($230 \mathrm{mg}, 53 \%$ overall yield) as an oil: IR (neat, cm^{-1}) 3400,$1713 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(60 \mathrm{MHz}, \mathrm{CCl}_{4}\right)$ $\delta 5.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}), 2.50-2.15(\mathrm{~m}, 6 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right) 140$.

The mixture of β, γ-unsaturated ketone ($188 \mathrm{mg}, 1.32 \mathrm{mmol}$) and 10% $\mathrm{Pd}-\mathrm{C}(30 \mathrm{mg})$ in AcOEt (15 mL) was stirred for 19 h under a H_{2} atmosphere. After filtration through Celite, followed by concentration under reduced pressure, the residue was subjected to flash chromatography. Elution with acetone-benzene ($1: 4 \mathrm{v} / \mathrm{v}$) gave the saturated keto alcohol ($122 \mathrm{mg}, 64 \%$) as an oil: IR ($\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}$) 3405,$1713 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.74(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.08$ $(\mathrm{m}, 2 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.40(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS} \mathrm{m/z}\left(\mathrm{M}^{+}\right) 142$.

To a stirred mixture of PCC ($950 \mathrm{mg}, 4.41 \mathrm{mmol}$) and Florisil (1.8 g) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added at room temperature a solution of unsaturated keto alcohol ($237 \mathrm{mg}, 1.67 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$. After 4 h of stirring at the same temperature, followed by dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was filtered through Celite. After evaporation of the solvent, the residue was used in the following reaction.

A mixture of the crude product and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(430 \mathrm{mg}, 1.29$ mmol) in dry $\mathrm{MeCN}(24 \mathrm{~mL})$ was stirred for 12 h at room temperature and heated for 1 h under reflux. After removal of the solvent under reduced pressure, the residue was subjected to flash chromatography. Elution with AcOEt-hexane ($3: 7 \mathrm{v} / \mathrm{v}$) provided $(Z)-7(5.4 \mathrm{mg}, 4 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) 1723,$1650 ;{ }^{1} \mathrm{H}$ NMR (90 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.28(\mathrm{dt}, J=11.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=11.6,1.5 \mathrm{~Hz}$, 1 H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.71$ (ddt, $J=7.8,7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47-2.25(\mathrm{~m}$, $4 \mathrm{H}), 2.15$ (br s, 1H), 2.10-1.90(m, 2H), 1.60-1.30(m, 2H); MS m/z (M^{+}) calcd 196.1099, obsd 196.1106.

Further elution with the same solvents gave $(E)-7(81 \mathrm{mg}, 60 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) 1720, 1655; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.97(\mathrm{dt}, J=16.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dt}, J=16.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.31(\mathrm{~m}, 4 \mathrm{H}), 2.25$ (ddt, $J=7.8,1.5,1.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 196.1099, obsd 196.1067. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 67.32 ; \mathrm{H}, 8.22$. Found: C , 67.25; H, 8.42.

2,2-Dimethyl-5-[2-(1,3-dioxa-2-cyclohexyl)ethyl]cyciohexan-1-one (17). To a hot mixture of activated $\mathrm{Mg}(59 \mathrm{mg}, 2.42 \mathrm{mmol})$ and a catalytic amount of I_{2} in dry THF (0.5 mL) was added a solution of 2-(2-bromoethyl)-1,3-dioxane ($0.28 \mathrm{~mL}, 2.02 \mathrm{mmol}$) in dry THF (1.25 mL), and the mixture was stirred for 3 h at room temperature. To a stirred mixture of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(12 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{HMPA}(0.5 \mathrm{~mL}, 2.88$ $\mathrm{mmol})$ in dry THF (1.5 mL) at $-78^{\circ} \mathrm{C}$ was slowly added the above mixture. After 45 min of stirring at $-78^{\circ} \mathrm{C}$, a solution of enone $16^{13}(150$ $\mathrm{mg}, 1.21 \mathrm{mmol}$) and TMSCl ($0.3 \mathrm{~mL}, 2.42 \mathrm{mmol}$) in dry THF (2 mL) was added over 10 min to the resulting mixture at $-78^{\circ} \mathrm{C}$. After 40 min of stirring at the same temperature, followed by additions of $\mathrm{AcOH}(0.28$ $\mathrm{mL}, 4.89 \mathrm{mmol}$) and THF (1.5 mL), the mixture was stirred for 1.5 h at room temperature. After neutralization with a mixture of $\mathrm{NH}_{4} \mathrm{Cl}-$ $\mathrm{NH}_{4} \mathrm{OH}(\mathrm{pH} 8)$, the resulting mixture was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated NaHCO_{3} and brine, dried, and evaporated. Flash chromatography of the residue with AcOEthexane ($1: 7 \mathrm{v} / \mathrm{v}$) as eluent gave $17(178 \mathrm{mg}, 61 \%)$ as a colorless oil: IR (neat, cm^{-1}) $1702 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.50(\mathrm{t}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10$ (dd, $J=12.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{dd}, J=13.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dd, $J=13.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS}$ $m / z\left(\mathrm{M}^{+}\right)$calcd 239.1647 , obsd 239.1666.

2,2-Dimethyl-5-[(3Z)- and (3E)-4-(methoxycarbonyl)-3-butenyl]cy-clohexan-1-one (18). A mixture of $17(446 \mathrm{mg}, 1.94 \mathrm{mmol})$ and 2.5% $\mathrm{HCl}(6.2 \mathrm{~mL})$ in acetone $(12.5 \mathrm{~mL})$ was stirred for 5 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 1 \mathrm{v} / \mathrm{v}$), the mixture was neutralized with $10 \% \mathrm{NH}_{4} \mathrm{OH}$. The organic phase was washed with brine, dried, and evaporated to give the crude aldehyde, which was used in the next reaction.

A mixture of the above product and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(778 \mathrm{mg}, 2.33$ $\mathrm{mmol})$ in dry $\mathrm{MeCN}(60 \mathrm{~mL})$ was stirred for 12 h at room temperature. Evaporation of the solvent gave a residue which was subjected to flash chromatography. Elution with AcOEt-hexane ($1: 8 \mathrm{v} / \mathrm{v}$) produced (Z) 18 ($6 \mathrm{mg}, 1.3 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) 1723,

1705, 1655 ; ${ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20$ (dt, $J=11.3,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.78(\mathrm{dt}, J=11.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.20(\mathrm{~m}, 4 \mathrm{H})$, 1.80-1.40 (m, 7H), $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z\left(\mathrm{M}^{+}\right)$calcd 238.1568 , obsd 238.1554 .

Additional eluate gave $(E)-18(120 \mathrm{mg}, 26 \%$ overall yield) as a colorless oil: IR (neat, $\left.\mathrm{cm}^{-1}\right) 1723,1705,1655 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.92(\mathrm{dt}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=15.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ ($\mathrm{s}, 3 \mathrm{H}$) , 2.33 (ddd, $J=13.0,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 3 \mathrm{H}), 1.78-$ $1.70(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}$ (M^{+}) calcd 238.1568 , obsd 238.1552.

Elution with AcOEt-hexane ($1: 7 \mathrm{v} / \mathrm{v}$) yielded 17 ($260 \mathrm{mg}, 56 \%$).
2,2-Dimethyl-4-[2-(1,3-dioxa-2-cyclohexyl)ethyllcyclopentan-1-one (20). To a stirred mixture of the Grignard reagent, prepared from Mg (1.40 $\mathrm{g}, 57.5 \mathrm{mmol}$) and 2-(2-bromoethyl)-1,3-dioxane ($6.60 \mathrm{~mL}, 49.7 \mathrm{mmol}$), a catalytic amount of $\mathrm{I}_{2}, \mathrm{CuBr} \cdot \mathrm{SMe}_{2}(390 \mathrm{mg}, 1.90 \mathrm{mmol})$, and HMPA $(13.3 \mathrm{~mL}, 76.4 \mathrm{mmol})$ in dry THF $(135 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added over 30 min a solution of $19{ }^{14}(4.20 \mathrm{~g}, 38.2 \mathrm{mmol})$ and $\mathrm{TMSCl}(9.70 \mathrm{~mL}, 76.4$ $\mathrm{mmol})$ in dry THF (60 mL), and the mixture was stirred for 40 min at $-78^{\circ} \mathrm{C}$. After addition of $\mathrm{AcOH}(6.80 \mathrm{~mL}, 118.0 \mathrm{mmol})$ and THF (56.7 mL), the resulting mixture was worked up as described for 17. The crude product was purified by chromatography on silica gel with AcOEt-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) as eluent to give $20(5.66 \mathrm{~g}, 66 \%)$ as a colorless oil: IR (neat, cm^{-1}) $1736 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.53(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{dd}, J=11.0,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{dt}, J=12.2,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.51$ (ddd, $J=18.6,7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.96$ (ddd, $J=12.5$, $6.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=18.3,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.48(\mathrm{~m}, 4 \mathrm{H})$, $1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m/z}\left(\mathrm{M}^{+}\right)$calcd 226.1569, obsd 226.1574. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$: $\mathrm{C}, 68.99 ; \mathrm{H}$, 9.80. Found: C, 68.82; H, 9.74 .

2,2-Dimethyl-4-[2-(1,3-dioxa-2-cyclohexyl)ethyl]cyclopentan-1-ol (21). To a stirred solution of $20(325 \mathrm{mg}, 1.44 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ at room temperature was slowly added $\mathrm{NaBH}_{4}(109 \mathrm{mg}, 2.88 \mathrm{mmol})$, and the mixture was stirred for 10 min . After addition of $\mathrm{H}_{2} \mathrm{O}$, the mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extracted was washed with brine, dried, and evaporated. Chromatography of the residue on silica gel with AcOEt-hexane ($3: 7 \mathrm{v} / \mathrm{v}$) as eluent yielded 21 ($321 \mathrm{mg}, 98 \%$) as a 1:1.5 mixture of two stereoisomers: IR (neat, cm^{-1}) $3450 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.49$ and 4.48 [each t , each $J=6.0 \mathrm{~Hz}, 1 \mathrm{H},(1.5$: $1)], 4.10(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.72$ and 3.62 [each $\mathrm{t}, J=7.0,6.0 \mathrm{~Hz}$, respectively, $1 \mathrm{H}(1.5: 1)$], 0.98 and 0.97 [each $\mathrm{s}, 3 \mathrm{H}(1.5: 1) \mathrm{l}, 0.90(\mathrm{~s}, 3 \mathrm{H})$; MS $m / z\left(\mathrm{M}^{+}-\mathrm{H}\right)$ calcd 227.1611, obsd 227.1651. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 68.38 ; \mathrm{H}, 10.59$. Found: C , 68.49; H, 10.58.

2,2-Dimethyl-4-[(3Z)- and (3E)-4-(methoxycarbonyl)-3-butenyl]cy-clopentan-1-one (22). A mixture of $21(377 \mathrm{mg}, 1.65 \mathrm{mmol})$ in 10% HClO_{4}-THF ($1: 1 \mathrm{v} / \mathrm{v}, 30 \mathrm{~mL}$) was stirred for 12 h at $30^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the organic phase was washed with saturated NaHCO_{3} and brine, dried, and evaporated. The residue was dissolved in dry MeCN $(100 \mathrm{~mL})$ and treated with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(551 \mathrm{mg}, 1.65 \mathrm{mmol})$ for 12 h at room temperature. Removal of the solvent gave a residue, which was subjected to silica gel chromatography with AcOEt-hexane (1:9 v / v) as eluent to afford the epimeric mixture of α, β-unsaturated esters ($256 \mathrm{mg}, 69 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) 3440 , 1721,$1654 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.99-6.92(\mathrm{~m}, 1 \mathrm{H}), 5.82$ (d, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-1.00(\mathrm{~m}$, 10 H), 0.98 and 0.97 [each s, $3 \mathrm{H}(1.5: 1)$], 0.93 and 0.92 [each s, 3 H (1.5:1)]; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 226.1568, obsd 226.1559.

To a stirred solution of DMP ${ }^{15}(1.08 \mathrm{~g}, 2.55 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) at room temperature was added a solution of the above alcohols (384 $\mathrm{mg}, 1.70 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and the mixture was stirred for 10 min at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was poured into saturated NaHCO_{3} containing $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and was stirred for 20 min at room temperature. The organic layer was washed with saturated NaHCO_{3} and brine, dried, and evaporated. The residue was subjected to chromatography on silica gel with AcOEt-hexane (3:17 $\mathrm{v} / \mathrm{v})$ to give (Z)-22 ($19.5 \mathrm{mg}, 5 \%$) as a colorless oil: IR (neat, cm^{-1}) 1735 , 1720,$1655 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.23$ (dt, $J=12.0,7.5 \mathrm{~Hz}$, 1 H), 5.79 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.53$ (ddd, $J=18.0,7.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.02$ (ddd, $J=11.0,7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.86(\mathrm{dd}, J=18.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 224.1413 , obsd 224.1412.

Further elution afforded (E)-22 ($345 \mathrm{mg}, 91 \%$) as a colorless oil: IR (neat, cm^{-1}) 1730, 1720, $1655 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96$ (dt, $J=15.9,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.52$ (ddd, $J=18.3,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=15.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.12$ $(\mathrm{m}, 1 \mathrm{H}), 2.00$ (ddd, $J=12.2,6.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{dd}, J=18.3,11.0$
$\mathrm{Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=15.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.07(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right)$calcd 224.1413, obsd 224.1424.

6-Allyl-2-hydroxycyclohexan-1-one (24). A mixture of cyclohexanone (23) ($49 \mathrm{~g}, 0.5 \mathrm{~mol}$), pyrrolidine ($71 \mathrm{~g}, 1.0 \mathrm{~mol}$), and $p-\mathrm{TsOH}(150 \mathrm{mg}$, 0.79 mmol) in dry benzene (500 mL) was heated for 24 h under reflux in a Dean-Stark apparatus. After evaporation, the residue was washed with a small amount of dry benzene. A mixture of the product and allyl bromide ($73 \mathrm{~g}, 0.6 \mathrm{~mol}$) in $\mathrm{Bu}^{n} \mathrm{OH}(125 \mathrm{~mL})$ was heated for 12 h under reflux. After evaporation of the solvent, followed by addition of $\mathrm{H}_{2} \mathrm{O}$ (200 mL), the mixture was heated for 3 h under reflux. After being cooled, the mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was dried and evaporated to give a residue, which was distilled to give 2-allylcyclohexan-1-one ($38 \mathrm{~g}, 55 \%$), bp $90-99^{\circ} \mathrm{C}(200 \mathrm{mmHg})$, as a colorless oil.

To a LDA-THF solution (30 mL), prepared from $\operatorname{Pr}^{i}{ }_{2} \mathrm{NH}(2.1 \mathrm{~mL}$, 15.0 mmol) and 1.54 M Bu Li -hexane ($8.44 \mathrm{~mL}, 13.0 \mathrm{mmol}$), was added at $-78^{\circ} \mathrm{C}$ a solution of 2-allylcyclohexan-1-one ($1.46 \mathrm{~g}, 10.6 \mathrm{mmol}$) in dry THF (20 mL). After 1 h of stirring at $-78^{\circ} \mathrm{C}$, the resulting mixture was transferred into a stirred mixture of $\mathrm{MoOPH}^{16}(7.8 \mathrm{~g}, 18.0 \mathrm{mmol})$ in dry THF (30 mL) at $-78^{\circ} \mathrm{C}$. After 1 h of stirring at $-78^{\circ} \mathrm{C}$, to the mixture was added saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$. After further addition of $\mathrm{H}_{2} \mathrm{O}$, the resulting mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with $5 \% \mathrm{HCl}$ and brine, dried, and evaporated. Chromatography on silica gel using AcOEt-hexane ($1: 9 \mathrm{v} / \mathrm{v}$) as eluent afforded 2-allylcyclohexan-1-one (116 mg) and an epimeric mixture of 24 ($907 \mathrm{mg}, 56 \%$) as a pale yellow oil: IR (neat, cm^{-1}) $3540 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.83-5.74$ and $5.71-5.62$ [each $\left.\mathrm{m}, 1 \mathrm{H}(3: 7)\right]$, 5.11$5.01(\mathrm{~m}, 2 \mathrm{H}), 4.26$ and 4.11 [each dd, each $J=12.0$ and $6.5 \mathrm{~Hz}, 1 \mathrm{H}$ (7:3)], 3.70 and 3.60 [each $\mathrm{s}, 1 \mathrm{H}(7: 3)$]; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 154.0994, obsd 154.0998 .

Methyl 2-Allyl-6,6-dimethoxyhexanoate (25). To a stirred solution of $24(953 \mathrm{mg}, 6.19 \mathrm{mmol})$ in hexane- $\mathrm{MeOH}(3: 1 \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added $\mathrm{Pb}(\mathrm{OAc})_{4}(2.75 \mathrm{~g}, 6.20 \mathrm{mmol})$. After 1 h of stirring, followed by additions of saturated NaHCO_{3} and $\mathrm{Et}_{2} \mathrm{O}$, the mixture was filtered through Celite. The organic phase was washed with brine, dried, and evaporated to give a residue, which was used in the next reaction without purification.

A mixture of the product and $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{mg}, 0.18 \mathrm{mmol})$ in MeOH (20 mL) was heated for 1 h under reflux. Evaporation of the solvent gave a residue, which was partitioned between saturated NaHCO_{3} and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried and evaporated to afford a residue, which was subjected to silica gel chromatography. Elution with AcOEt -hexane ($1: 9 \mathrm{v} / \mathrm{v}$) provided 25 ($990 \mathrm{mg}, 70 \%$) as a colorless oil: IR (neat, cm^{-1}) $1740 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.78-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.95(\mathrm{~m}$, 2 H), $4.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right.$ - H) calcd 229.1440 , obsd 229.1438.

3-Allyl-1-diazo-7,7-dimethoxyheptan-2-one (26). A mixture of 25 (497 $\mathrm{mg}, 2.16 \mathrm{mmol})$ and $\mathrm{KOH}(200 \mathrm{mg}, 3.6 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(5: 1 \mathrm{v} / \mathrm{v}$, 6 mL) was heated for 6 h under reflux. After addition of $10 \% \mathrm{KHSO}_{4}$ with cooling, the mixture was thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried, and evaporated to give a residue, which was used in the following reaction without purification.

To a mixture of the product and pyridine ($0.177 \mathrm{~mL}, 2.21 \mathrm{mmol}$) in dry benzene $(5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added a solution of $(\mathrm{COCl})_{2}$ ($0.175 \mathrm{~mL}, 2.01 \mathrm{mmol}$) in dry benzene (1 mL), and the mixture was stirred for 1 h at room temperature. The mixture was filtered through Celite using benzene. Evaporation of the filtrate gave a residue, which was subjected to the next reaction without purification.

To a solution of excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added a solution of the above product in dry benzene (5 mL), and the mixture was stirred for 12 h at room temperature. After evaporation, the residue was subjected to chromatography on silica gel with protection from light. Elution with AcOEt-hexane ($1: 9 \mathrm{v} / \mathrm{v}$) afforded $26(268 \mathrm{mg}$, 52%) as a yellowish oil: IR (neat, cm^{-1}) 2100,$1640 ;{ }^{1} \mathrm{H}$ NMR (60 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.20-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.25-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z\left(\mathrm{M}^{+}-\mathrm{CHN}_{2}\right)$ calcd 199.1334, obsd 199.1374.

3-(4,4-Dimethoxybutyl)bicyclo[3.1.0]hexan-2-one (27). To a stirred hot mixture of $\mathrm{Cu}(250 \mathrm{mg}, 3.9 \mathrm{mmol})$ in dry cyclohexane (10 mL) was slowly added a solution of $26(201 \mathrm{mg}, 0.84 \mathrm{mmol})$ in dry cyclohexane $(10 \mathrm{~mL})$, and the mixture was heated for 1 h under reflux. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was filtered through Celite. Evaporation of the filtrate gave a residue, which was chromatographed on silica gel. Elution with AcOEt-hexane ($1: 9 \mathrm{v} / \mathrm{v}$) provided $27(148 \mathrm{mg}, 83 \%)$ as an epimeric mixture: IR (neat, cm^{-1}) $1720 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.30$ (dd, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 6 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.95-0.91$ and $0.76-0.72$ [each $\mathrm{m}, 1 \mathrm{H}(7: 1)$]; MS $m / z\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$ calcd 181.1229, obsd 181.1190 .

3-[(4E)-5-(Methoxycarbonyl)-4-pentenylpicyclo[3.1.0]hexan-2-one (28). A mixture of $27(219 \mathrm{mg}, 1.04 \mathrm{mmol})$ in $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v} / \mathrm{v}, 5 \mathrm{~mL})$ was stirred for 3 h at room temperature. After neutralization with saturated NaHCO_{3} with cooling, the mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried, and evaporated to give a residue, which was used in the following reaction without purification.

A mixture of the product and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(1.17 \mathrm{~g}, 3.5 \mathrm{mmol})$ in dry $\mathrm{MeCN}(20 \mathrm{~mL})$ was stirred for 24 h at room temperature. After evaporation, the residue was taken up into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic solution was washed with brine, dried, and evaporated. Chromatography of the residue on silica gel with AcOEt-hexane ($1: 9 \mathrm{v} / \mathrm{v}$) as eluent gave a $7: 1$ mixture of 28 ($134 \mathrm{mg}, 74 \%$) as a colorless oil: IR (neat, cm^{-1}) 1720 , $1660 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.94(\mathrm{dt}, J=16.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dt, $J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (s, 3 H), $1.22-1.12$ (m, 2H), 0.990.95 and $0.90-0.85$ [each $\mathrm{m}, 1 \mathrm{H}(7: 1)$]; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) $215.7,167.1,149.1,121.3,51.5,40.3,32.3,30.3,29.3,27.6,26.0$, 20.1, 14.6; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 222.1256, obsd 222.1266. Two stereoisomers were separable by HPLC on Si 80-199-C5 with AcOEthexane ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent ($4 \mathrm{~mL} \min ^{-1}$), the major isomer ($t_{\mathrm{R}}=11.2$ min) and the minor one ($t_{\mathrm{R}}=13.2 \mathrm{~min}$).

2-(4,4-Dimethoxybutyl)cyclohexan-1-one (30). To a stirred LDATHF solution (60 mL), prepared from $\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NH}(4.6 \mathrm{~mL}, 33.0 \mathrm{mmol})$ and $1.56 \mathrm{M} \mathrm{Bu}^{\mathrm{n} L i}$-hexane ($18.5 \mathrm{~mL}, 29.0 \mathrm{mmol}$), was slowly added at $0^{\circ} \mathrm{C}$ a solution of N-cyclohexylidenecyclohexylamine (29) ($4.0 \mathrm{~g}, 22.0 \mathrm{mmol}$) in dry THF $(10 \mathrm{~mL})$. After 30 min of stirring at $0^{\circ} \mathrm{C}$, followed by addition of HMPA $(5.0 \mathrm{~mL}, 29.0 \mathrm{mmol})$, a solution of 4 -bromo-1,1dimethoxybutane ($5.70 \mathrm{~g}, 29.0 \mathrm{mmol}$) in dry THF (10 mL) was added. After 1 h of stirring at $0^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic solution was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried, and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) afforded $30\left(4.1 \mathrm{~g}, 86 \%\right.$) as a colorless oil: IR (neat, cm^{-1}) $1710 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.36(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 6 \mathrm{H})$, $2.42-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.15-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.54$ ($\mathrm{m}, 3 \mathrm{H}$), 1.43-1.13 (m,5H); MS $m / z\left(\mathrm{M}^{+}-\mathrm{MeOH}\right)$ calcd 182.1306, obsd 182.1311 .

2-[(4E)-and (4Z)-5-(Methoxycarbonyl)-4-pentenyl]cyclohexan-1-one (11). (A) A mixture of $30(2.0 \mathrm{~g}, 9.3 \mathrm{mmol})$ and $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(11.5$ $\mathrm{g}, 93.0 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL})$ was stirred for 3 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was neutralized with saturated NaHCO_{3} with cooling. The organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, and evaporated to give the crude aldehyde (1.7 g), which was used in the next reaction without purification.

A mixture of the above product (1.7 g) and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$ (4.0 $\mathrm{g}, 12.1 \mathrm{mmol}$) in dry $\mathrm{MeCN}(40 \mathrm{~mL})$ was stirred for 12 h at room temperature. After evaporation, the residue was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) as eluent to afford a $16: 1$ mixture of (E) - and (Z)-11 ($1.8 \mathrm{~g}, 86 \%$ overall yield) as a colorless oil.
(B) To a mixture of 18 -crown- $6(1.4 \mathrm{~g}, 5.20 \mathrm{mmol})$ and $\left(\mathrm{CF}_{3}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(=\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}(0.286 \mathrm{~mL}, 1.35 \mathrm{mmol})$ in dry THF (3.5 mL) was added at $-78^{\circ} \mathrm{C} 0.5 \mathrm{M} \mathrm{KN}(\mathrm{TMS})_{2}$-toluene ($2.2 \mathrm{~mL}, 1.14$ mmol). After 30 min of stirring at $-78^{\circ} \mathrm{C}$, a solution of the crude aldehyde (175 mg) in dry THF (1 mL) was added to the mixture. After 1 h of stirring at $-78^{\circ} \mathrm{C}$, the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic solution was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried, and evaporated to give a residue, which was subjected to silica gel chromatography. Elution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) afforded a $1: 22.5$ mixture of (E) - and $(Z)-11(170 \mathrm{mg}, 81 \%$ overall yield) as a colorless oil.

Data for (E)-11: IR (neat, cm^{-1}) 1720, 1710, 1660; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96(\mathrm{dt}, J=15.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.8,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.16(\mathrm{~m}, 5 \mathrm{H}), 2.15-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.73$ (m, 2H), 1.72-1.62 (m, 2H), 1.52-1.33 (m, 3H), 1.27-1.16(m, 1H); MS $m / z\left(\mathrm{M}^{+}\right)$calcd 224.1411, obsd 224.1410 .

Data for (Z)-11: IR (neat, cm^{-1}) 1720, 1710, 1640; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.28(\mathrm{dt}, J=11.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dt}, J=11.6,1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.71 (s, 3H), 2.72 (ddd, $J=7.3,7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.44-2.29 $(\mathrm{m}, 4 \mathrm{H}), 2.11-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) 213.2,166.8,150.5,119.4,51.0,50.4$, 42.1, 34.0, 29.1, 29.0, 28.1, 26.6, 24.9; MS $m / z\left(\mathbf{M}^{+}\right)$calcd 224.1411, obsd 224.1431. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 69.61 ; \mathrm{H}, 8.99$. Found: C, $69.55 ; \mathrm{H}, 9.13$.

Methyl 8-Oxo-2-nonenate (13). To a solution of ϵ-caprolactone (1.5 $\mathrm{g}, 13.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ DME ($1: 1 \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL}$) was slowly added at $-78^{\circ} \mathrm{C} 0.93 \mathrm{M}$ DIBALH-hexane ($15.5 \mathrm{~mL}, 14.5 \mathrm{mmol}$), and the mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$. After additions of $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and
$\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, the mixture was stirred for 1.5 h at room temperature. The organic phase was dried and evaporated to give the crude aldehyde (1.5 g), which was subjected to the following reaction without purification.

To a stirred solution of the above product (1.5 g) in dry THF (40 mL) was slowly added at $0^{\circ} \mathrm{C} 0.98 \mathrm{M} \mathrm{MeMgI}-\mathrm{Et}_{2} \mathrm{O}(4.1 \mathrm{~mL}, 40.0 \mathrm{mmol})$. After 8 h of stirring at room temperature, the resulting mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was washed with brine, dried, and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with AcOEt-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) provided the diol ($851 \mathrm{mg}, 49 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) 3360; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $83.83-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{br}$ $\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.22(\mathrm{~m}, 7 \mathrm{H}), 1.19(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; MS $m / z\left(\mathrm{M}^{+}-1\right) 131,\left(\mathrm{M}^{+}-1-\mathrm{H}_{2} \mathrm{O}\right) 113$.

To a solution of the diol ($400 \mathrm{mg}, 3.0 \mathrm{mmol}$) in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(16 \mathrm{~mL})$ were added $4-\AA$ molecular sieves $(2.3 \mathrm{~g})$ and PCC ($1.5 \mathrm{~g}, 7.0 \mathrm{mmol}$), and the mixture was stirred for 1 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was filtered through silica gel. Evaporation of the filtrate gave the keto aldehyde (370 mg). A mixture of the product (370 $\mathrm{mg})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(1.3 \mathrm{~g}, 3.8 \mathrm{mmol})$ in dry $\mathrm{MeCN}(16 \mathrm{~mL})$ was stirred for 16 h at room temperature. After removal of the solvent, the residue was purified by silica gel chromatography. Elution with $\mathrm{Et}_{2} \mathrm{O}-$ hexane ($1: 2 \mathrm{v} / \mathrm{v}$) yielded $13(280 \mathrm{mg}, 50 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) $1715,1705,1650 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.94(\mathrm{dt}, J=15.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dt}, J=15.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 2.45(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) 208.3, 166.8, 148.7, 121.1, 51.3, 43.2, 31.9, 29.8, 27.4, 23.1; MS $m / z\left(\mathrm{M}^{+}\right)$185. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 65.19 ; \mathrm{H}, 8.75$. Found: C, 65.18; H, 8.71.

3-Methylheptane-2,7-diol. α-Methyl- ϵ-caprolactone ${ }^{19}$ ($1.5 \mathrm{~g}, 11.7$ mmol) was reduced with 0.93 M DIBALH-hexane $(13.9 \mathrm{~mL}, 12.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-DME ($1: 1 \mathrm{v} / \mathrm{v}, 40 \mathrm{~mL}$) as above to give the crude aldehyde $(1.5 \mathrm{~g})$. Reaction of the product $(1.5 \mathrm{~g})$ with $0.98 \mathrm{M} \mathrm{MeMgI-Et} \mathrm{t}_{2} \mathrm{O}(27$ $\mathrm{mL}, 26.5 \mathrm{mmol}$) in dry THF, followed by workup as above, gave the diol ($1.4 \mathrm{~g}, 82 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) $3350 ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.77-3.67(\mathrm{~m}, 0.57 \mathrm{H}), 3.64(\mathrm{t}, J=6.2 \mathrm{~Hz}$, 2 H), 3.54-3.40 (m, 0.43H), 1.93 (br s, 1 H), 1.78 (br s, 1H), 1.62-1.27 $(\mathrm{m}, 5.7 \mathrm{H}), 1.22-1.13(\mathrm{~m}, 0.3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1.7 \mathrm{H}), 1.13(\mathrm{~d}, J$ $=6.2 \mathrm{~Hz}, 1.3 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.89$ and 0.88 [each d, each $J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}(1.7: 1.3)$]; MS $m / z\left(\mathrm{M}^{+}+1\right)$ calcd 147.1384 , obsd 147.1359 .

Methyl 7-Methyl-8-oxo-2-nonenate (33). The above diol (546 mg , 3.7 mmol) was oxidized using $4-\AA$ molecular sieves (2.8 g) and PCC (1.9 $\mathrm{g}, 8.6 \mathrm{mmol})$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(22 \mathrm{~mL})$ as above to afford the keto aldehyde (530 mg), which was transformed, by the reaction with $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2}-$ Me ($1.6 \mathrm{~g}, 4.8 \mathrm{mmol}$) in $\mathrm{MeCN}(1.5 \mathrm{~mL})$ as above, to provide 33 (380 $\mathrm{mg}, 51 \%$ overall yield) as a colorless oil: IR (neat, cm^{-1}) 1720, 1710, 1650; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.94(\mathrm{dt}, J=15.9,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.82 (dt, $J=15.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{dd}, J=13.8,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.32(\mathrm{~m}$, $3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 198.1255 , obsd 198.1275. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 66.64 ; \mathrm{H}, 9.15$. Found: C , 66.60; H, 9.04 .
(土)-(1R $\left.R^{*}, 2 S^{*}, 3 R^{*}, 6 S^{*}, 8 S^{*}\right)$-3-(tert-Butyldimethylsiloxy)-2(methoxycarbonyl)tricyclo[4.2.1.0 ${ }^{3.8}$ nonane (34). (A) To a stirred solution of $(E)-7(20 \mathrm{mg}, 0.10 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added at room temperature $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.72 \mathrm{mmol})$ and TBDMSOTf (0.1 $\mathrm{mL}, 0.44 \mathrm{mmol}$), and the reaction mixture was stirred for 1 h . After dilution with hexane, the mixture was washed with $5 \% \mathrm{KHSO}_{4}$ and saturated NaHCO_{3}, dried, and evaporated to give a residue which was subjected to flash chromatography on silica gel. Elution with $\mathrm{Et}_{2} \mathrm{O}-$ hexane ($3: 97 \mathrm{v} / \mathrm{v}$) gave 34 ($15 \mathrm{mg}, 48 \%$) as a colorless oil: IR (neat, cm^{-1}) $1740 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}$), 2.87 (dd, $J=$ $8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (ddd, $J=8.4,8.4,3.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.21 (ddd, $J=8.2,4.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.80$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (dddd, $J=12.6,8.2,4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{br} \mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83$ $(\mathrm{s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) 173.6, 75.5, 55.8, 51.5, 47.9, 39.3, 33.0, 31.5, 30.9, 30.5, 25.9, 25.6,17.9, $-2.5,-2.7$; MS $m / z\left(\mathrm{M}^{+}-\mathrm{Me}\right)$ calcd 295.1729, obsd 295.1728.

Further elution afforded $35(15.2 \mathrm{mg}, 49 \%)$ as a colorless oil: IR (neat, cm^{-1}) $1725,1670,1650 ;{ }^{1} \mathrm{H}$ NMR $\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95$ (dt, $J=16.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dt}, J=16.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.30-1.20(\mathrm{~m}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 6 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right.$ -1) calcd 309.1886, obsd 309.1853.
(B) Using the same procedure as above, (Z)-7 $(9.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ was converted into 34 ($7.1 \mathrm{mg}, 47 \%$), which was identical with the above product in all respects.
(\pm)-($\left.1 \mathbf{S}^{*}, 5 R^{*}, 7 R^{*}\right)$ - and ($\left.1 S^{*}, 5 R^{*}, 7 S^{*}\right)$-7-[(Methoxycarbonyl) methyl] bicyclo[3.2.1 \}octan-2-one ($\mathbf{3 6}$ and 37). (A) To a stirred mixture of 1 M $\mathrm{LiN}(\mathrm{TMS})_{2}-\mathrm{THF}(0.18 \mathrm{~mL}, 0.18 \mathrm{mmol})$ in dry THF (1 mL) was slowly added at $-78^{\circ} \mathrm{C}$ a solution of $(E)-7(17 \mathrm{mg}, 0.09 \mathrm{mmol})$ in dry THF (1 mL), and the mixture was stirred for 5.5 h at $-78^{\circ} \mathrm{C}$ and for 9.5 h at room temperature. After dilution with benzene, the mixture was washed with $5 \% \mathrm{KHSO}_{4}$ and brine, dried, and evaporated. Flash chromatography of the residue with AcOEt-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) as eluent gave a $3: 1$ mixture of 36 and $37\left(4.3 \mathrm{mg}, 39 \%\right.$) as a colorless oil: IR (neat, cm^{-1}) 1738, 1710; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 0.5 \mathrm{H}), 2.56-$ $2.22(\mathrm{~m}, 7.25 \mathrm{H}), 2.16$ (ddd, $J=18.0,11.5,9.0 \mathrm{~Hz}, 0.25 \mathrm{H}), 2.04$ (ddd, $J=14.0,8.0,2.0 \mathrm{~Hz}, 0.75 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.64(\mathrm{~m}, 3 \mathrm{H})$, $1.24(\mathrm{dd}, J=13.0,6.0 \mathrm{~Hz}, 0.25 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z\left(\mathrm{M}^{+}\right)$calcd 196.1099, obsd 196.1093.
(B) A mixture of $(E)-7$ ($21 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\mathrm{ZnCl}_{2}(162 \mathrm{mg}, 1.23$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.08 \mathrm{mmol})$, and $\mathrm{TMSCl}(0.15 \mathrm{~mL}, 1.18 \mathrm{mmol})$ in dry toluene (7.5 mL) was heated for 17 h at $160^{\circ} \mathrm{C}$ in a sealed tube. The mixture was partitioned between $5 \% \mathrm{HCl}$ and benzene. The organic phase was washed with saturated NaHCO_{3} and brine, dried, and evaporated to give a residue, which was dissolved in THF (1 mL) and treated for 20 min with $10 \% \mathrm{HClO}_{4}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$-benzene ($1: 1 \mathrm{v} / \mathrm{v}$), the mixture was washed with saturated NaHCO_{3} and brine, dried, and evaporated. The residue was purified by flash chromatography with AcOEt-hexane ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent to give a $10: 1$ mixture of 36 and 37 ($4.1 \mathrm{mg}, 19 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.16$ (ddd, $J=18.0$, $11.5,9.0 \mathrm{~Hz}, 0.09 \mathrm{H}$), 2.04 (ddd, $J=14.0,8.0,2.0 \mathrm{~Hz}, 0.91 \mathrm{H}$).
(C) To a solution of $34(13 \mathrm{mg}, 0.04 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL})$, and the mixture was heated for 15 h at $60^{\circ} \mathrm{C}$ and for 6 h at $110^{\circ} \mathrm{C}$. After addition of $\mathrm{AcOH}(0.5 \mathrm{~mL})$, the mixture was further heated at $110^{\circ} \mathrm{C}$. Removal of solvents gave a residue, which was taken up into $\mathrm{Et}_{2} \mathrm{O}$-benzene ($1: 1 \mathrm{v} / \mathrm{v}$). The organic solution was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, and evaporated. The residue was subjected to flash chromatography with AcOEt-hexane (1:4 v / v) as eluent to give 37 ($4.1 \mathrm{mg}, 51 \%$) as a colorless oil: IR (neat, cm^{-1}) 1738,$1710 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.62(\mathrm{~m}$, $2 \mathrm{H}), 2.41(\mathrm{dd}, J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=16.0,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.16 (ddd, $J=18.0,11.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.71$ ($\mathrm{m}, 3 \mathrm{H}$), $1.24(\mathrm{dd}, J=13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 196.1099, obsd 196.1111.
(土)-(1R $\left.R^{*}, 2 S^{*}, 3 R^{*}, 6 S^{*}, 8 S^{*}\right)$-3-(tert-Butyldimethylsiloxy)-2(hydroxymethyl)tricyclo[4.2,1.03,8 $]$ nonane (38). To a stirred solution of $34(77 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dry DME (6 mL) was added at $0^{\circ} \mathrm{C} 1 \mathrm{M}$ DIBALH-hexane ($0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}$), and the mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. After additions of $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.75 \mathrm{~mL})$, the mixture was stirred for 30 min at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$-benzene ($1: 1 \mathrm{v} / \mathrm{v}$), the organic solution was filtered through Celite, dried, and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with AcOEt-hexane ($1: 20 \mathrm{v} / \mathrm{v}$) afforded 37 ($58 \mathrm{mg}, 83 \%$) as a colorless oil: IR (neat, cm^{-1}) $3575 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.94(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.61[\mathrm{br} \mathrm{d}$, (dd with $\mathrm{D}_{2} \mathrm{O}$), $\left.J=11.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}\right], 2.90$ (br s, disappeared with $\mathrm{D}_{2} \mathrm{O}, 1 \mathrm{H}$), $2.66(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.12$ (ddd, $J=11.0,5.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=13.4,8.2,1 \mathrm{H})$, $1.80(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{dd}, J=12.0,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, $3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) 77.2, 64.7, 51.1, $46.3,39.6,33.0,31.5,30.90,30.8,26.0,25.9,17.9,-2.4,-2.7$; MS m / z (M^{+}) calcd 282.2015 , obsd 282.2032.
(\pm)-($\left.1 R^{*}, 2 S^{*}, 3 R^{*}, 6 S^{*}, 8 S^{*}\right)$-3-Hydroxy-2-(hydroxymethyl)tricyclo[4.2.1.0 3, ${ }^{3}$ nonane (39). (A) A mixture of $38(13 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NF}-$ THF ($0.5 \mathrm{~mL}, 0.5 \mathrm{mmol}$) in THF (1.75 mL) was stirred for 15 min at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$-benzene ($1: 1$ v / v), the mixture was washed with $5 \% \mathrm{KHSO}_{4}$ and saturated NaHCO_{3}, dried, and evaporated. Chromatography of the residue on silica gel with AcOEt-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) as eluent gave $39(7.9 \mathrm{mg}, 94 \%)$ as a colorless powder, $\mathrm{mp} 43-44^{\circ} \mathrm{C}$: IR (neat, cm^{-1}) $3380 ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.96(\mathrm{dd}, J=11.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}$, 1 H), 2.63 (br t, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (br s, 2 H), 2.25-2.11 (m, 2H), 2.08-2.02 (m, 1H), 2.01-1.88(m,1H), $1.82(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-$ $1.61(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.19(\mathrm{~m}$, $2 \mathrm{H})$; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 168.1150 , obsd 168.1152 .
(B) Reduction of $55(11 \mathrm{mg}, 0.041 \mathrm{mmol})$ was carried out using 0.93 M DIBALH-hexane ($0.097 \mathrm{~mL}, 0.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ as above. The crude product (10 mg) was treated with $1 \mathrm{M} \mathrm{Bu}{ }^{\mathrm{n}} \mathrm{N}^{\mathrm{NF}}$-THF $(0.054 \mathrm{~mL}, 0.054 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$, and the product was purified as above to give $39(6 \mathrm{mg}, 87 \%)$ as a colorless powder, $\mathrm{mp} 43-44^{\circ} \mathrm{C}$, which was identical with the above compound.
（土）－（ $\left.1 S^{*}, 4 S^{*}, 75^{*}, 8 R^{*}, 9 R^{*}\right)$－1－（tert－Butyldimethylsiloxy）－2，2－dime－ thyl－9－（methoxycarbonyl）tricyclo［5．1．1．0 ${ }^{4.8}$ ］nonane（40）．（A）To a stirred solution of $\mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}, 2.1 \mathrm{mmol})$ and TBDMSOTf（ $0.3 \mathrm{~mL}, 1.3$ mmol ）in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（ 3 mL ）was slowly added under reflux a solution of（E）－22（ $49 \mathrm{mg}, 0.22 \mathrm{mmol}$ ）in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ ，and the mixture was heated for 15 min under reflux．After dilution with hexane，the mixture was washed with saturated NaHCO_{3} and brine，dried，and evaporated to give a residue，which was chromatographed on silica gel． Elution with $\mathrm{Et}_{2} \mathrm{O}$－hexane（ $1: 99 \mathrm{v} / \mathrm{v}$ ）provided $40(15 \mathrm{mg}, 20 \%)$ as a colorless oil：IR（neat， cm^{-1} ） $1732 ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 3.62$ （s，3H）， 3.08 （dddd，$J=9.2,8.6,7.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 2.94 （dd，$J=8.6$ ， $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 1 \mathrm{H}), 1.94$（dddd， $J=13.4,9.9,9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{dd}, J=13.4$ ， $8.4 \mathrm{~Hz}, 1 \mathrm{H}), \mathrm{l} .56-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{dd}, J=13.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94$ （s，3H）， $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR （ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ） $172.6,86.8,54.1,52.8,51.4,47.9,43.6,40.4$ ， $34.5,31.9,31.2,26.0,23.3,20.2,18.2,-1.5,-3.0 ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 338．2277，obsd 338．2246．

Further elution afforded 41 （ $24 \mathrm{mg}, 32 \%$ ）as a colorless oil：IR（neat， cm^{-1} ） 1745,$1640 ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 5.61-5.57(\mathrm{~m}, 1 \mathrm{H})$ ， 5．54－5．50（m，1H）， $4.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.69$ and 3.68 ［each s，3H（1：1．2）］， 3.10 and 3.04 ［each d，each $J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$ ］，2．63－2．49（m，1H），2．12－ $1.94(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.03$ and 1.06 ［each s， $3 \mathrm{H}(1.2: 1)$ ］， $1.00(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H})$ ； MS $m / z\left(\mathrm{M}^{+}\right)$calcd 338.2277 ，obsd 338.2232 ．
（B）（Z）－22（ $19 \mathrm{mg}, 0.09 \mathrm{mmol}$ ）was converted，as above using $\mathrm{Et}_{2} \mathrm{~N}$ $(0.1 \mathrm{~mL}, 0.77 \mathrm{mmol})$ and TBDMSOTf（ $0.1 \mathrm{~mL}, 0.4 \mathrm{mmol}$ ），into 40 （ 3.2 $\mathrm{mg}, 11 \%$ ）and 41 （ $13 \mathrm{mg}, 45 \%$ ），which were identical with the above samples in all respects．
（ \pm ）－（ $\left.1 S^{*}, 4 S^{*}, 7 S^{*}, 8 S^{*}, 9 S^{*}\right)$－1－（tert－Butyldimethylsiloxy）－2，2－dimeth－ yl－9－（hydroxymethyl）tricyclo［5．1．1．04，8 nonane（42）．Reduction of 40 （10 $\mathrm{mg}, 0.03 \mathrm{mmol}$ ）with 1 M DIBALH－hexane（ $0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$ ）in dry DME（ 2 mL ）as previously described，followed by the similar workup procedure，gave 42 （ $8 \mathrm{mg}, 86 \%$ ）as a colorless oil：IR（neat， cm^{-1} ） 3410 ； ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.39(\mathrm{~m}$ ， $1 \mathrm{H}), 2.91(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H})$ ， $1.92-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H})$ ， $0.84(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z\left(\mathrm{M}^{+}\right)$calcd 310．2326， obsd 310.2338 ．
（土）－（1S $\left.S^{*}, 4 S^{*}, 7 S^{*}, 8 S^{*}, 9 S^{*}\right)$－2，2－Dimethyl－1－hydroxy－9－ （hydroxymethyl）tricyclo［5．1．1．04，8］nonane（43）．Treatment of $\mathbf{4 2}(20 \mathrm{mg}$ ， 0.07 mmol ）with $1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NF}-\mathrm{THF}(0.65 \mathrm{~mL}, 0.65 \mathrm{mmol})$ ，followed by workup as previously described and chromatography on silica gel，with AcOEt－hexane（ $3: 17 \mathrm{v} / \mathrm{v}$ ）as eluent，gave $43(8.5 \mathrm{mg}, 66 \%)$ as a colorless oil：IR（neat， cm^{-1} ） $3430 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.84$（dd，$J$ $=10.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.55(\mathrm{~m}, 3 \mathrm{H})$ ， $2.00(\mathrm{dt}, J=8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H})$ ， $1.35(\mathrm{dd}, J=13.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}\left(\mathrm{M}^{+}\right.$ $-\mathrm{H}_{2} \mathrm{O}$ ）calcd 178.1357 ，obsd 178.1358 ．

3，3－Dimethyl－8－［（methoxycarbonyl）methyl］bicyclo［3．3．0］octan－2－one （44）．A mixture of $(E)-22(22 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{ZnCl}_{2}(160 \mathrm{mg}, 1.2$ mmol）， $\mathrm{Et}_{3} \mathrm{~N}(0.15 \mathrm{~mL}, 1.1 \mathrm{mmol})$ ，and $\mathrm{TMSCl}(0.15 \mathrm{~mL}, 1.7 \mathrm{mmol})$ in dry toluene（ 7 mL ）was heated for 12 h at $160^{\circ} \mathrm{C}$ in a sealed tube． After dilution with $\mathrm{Et}_{2} \mathrm{O}$ ，the mixture was washed with $5 \% \mathrm{HCl}$ ，saturated NaHCO_{3} ，and brine，dried，and evaporated．Chromatography of the residue on silica gel with AcOEt－hexane（ $1: 4 \mathrm{v} / \mathrm{v}$ ）gave a $1: 1.5$ mixture of 44 （ $16 \mathrm{mg}, 48 \%$ ）as an oil：IR（neat， cm^{-1} ）1734，1729；${ }^{1}$ H NMR（500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 3.70$ and 3.68 ［each s， $3 \mathrm{H}(1.5: 1)$ ］， 2.24 and 2.22 ［each dd，$J=5.8,3.0$ and $6.4,3.6 \mathrm{~Hz}$ ，respectively， $2 \mathrm{H}(1.5: 1)], 1.04$ and 1.12 ［each s， $3 \mathrm{H}(1.5: 1)$ ］， 1.06 and 0.99 ［each s，3H（1．5：1）］；MS $m / z\left(\mathbf{M}^{+}\right)$ calcd 224．1411，obsd 224.1412 ．
（ \pm ）－（ $\left.1 R^{*}, 2 S^{*}, 3 S^{*}, 7 R^{*}, 9 S^{*}, 11 S^{*}\right)$－1－（tert－Butyldimethylsiloxy）－2－ （methoxycarbonyl）tetracyclo［5．4．0．0 $\left.{ }^{3.7}, 0^{9,11}\right]$ undecane（45）．（A）To a stirred solution of $3 S^{*}$－isomer of 28 （ $10 \mathrm{mg}, 0.045 \mathrm{mmol}$ ）and $\mathrm{Et}_{3} \mathrm{~N}$ （ $0.019 \mathrm{~mL}, 0.135 \mathrm{mmol}$ ）in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added at room temperature TBDMSOTf $(0.026 \mathrm{~mL}, 0.113 \mathrm{mmol})$ ，and the mixture was stirred for 5 min ．After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ，the mixture was washed with saturated $\mathrm{NaHCO}_{3}, 5 \% \mathrm{KHSO}_{4}$ ，and brine，dried，and evaporated． Flash chromatograph of the residue，with AcOEt－hexane（1：19 v／v）as eluent，afforded 45 （ $15 \mathrm{mg}, 99 \%$ ）as a colorless oil：IR（neat， cm^{-1} ）1725； ${ }^{1} \mathrm{H} N \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}{ }_{3}\right) \delta 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$ ， 2.37 （dd，$J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 2.09 （ddd，$J=13.5,6.2,1.2 \mathrm{~Hz}, 1 \mathrm{H})$ ， 1.88 （ddd，$J=12.8,6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.40$（m， 7 H ）， 1.10 （ddd，$J$ $=12.6,10.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.66$（ddd，$J=8.2,8.2,4.4 \mathrm{~Hz}$ ， 1 H ）， 0.18 （ddd，$J=4.4,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H})$ ； ${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ） $173.3,83.9,61.8,51.9,51.2,42.1$ ，
$41.3,31.8,31.6,28.9,26.2,26.0,19.7,18.4,13.5,-3.4,-3.5 ;$ MS m / z （ M^{+}）calcd 336.2120 ，obsd 336.2107 ．
（B）The $3 R^{*}$－isomer of $28(5 \mathrm{mg}, 0.023 \mathrm{mmol})$ was similarly converted into 45 （ $7.5 \mathrm{mg}, 99 \%$ ），which was identical with the above compound in all respects．
（土）－（1 $\left.R^{*}, 2 R^{*}, 3 S^{*}, 7 R^{*}, 9 S^{*}, 11 S^{*}\right)$－1－（tert－Butyldimethylsiloxy）－2－ （hydroxymethyl）tetracyclo［5．4．0．0，7， $0^{9,11}$ ］undecane（46）．Reduction of 45 （ $7 \mathrm{mg}, 0.021 \mathrm{mmol}$ ）with 1 M DIBALH－hexane（ $0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$ ） in dry DME（ 1 mL ），followed by workup as previously described and flash chromatography with AcOEt－hexane（ $3: 47 \mathrm{v} / \mathrm{v}$ ）as eluent gave 46 （ $6.4 \mathrm{mg}, 100 \%$ ）as a colorless oil：${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.94$ （dd，$J=10.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 3.80 （dd，$J=10.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 2.03 （ddd， $J=13.0,6.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.46$ （m， 8 H ）， 1.42 （ddddd，$J=8.0,8.0,6.3,4.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19$（br s， 1 H ）， 1.06 （ddd，$J=12.3,12.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.66$（dddd，$J=$ $8.5,8.5,4.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 0.16 （ddd，$J=4.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 0.12 （s， $3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$ ）76．9，63．7， 60.5 ， $49.4,43.7,42.2,32.6,32.1,27.5,26.5,26.0,19.7,18.4,13.2,-2.9,-3.0$ ； MS $m / z\left(\mathrm{M}^{+}\right)$calcd 308．2172，obsd 308.2168 ．
（ \pm ）－（ $1 R^{*}, 2 S^{*}, 3 S^{*}, 7 R^{*}, 9 S^{*}, 11 S^{*}$ ）－1－Hydroxy－2－（methoxycarbonyl）－ tetracyclo［5．4．0．0 $0^{3,7} .0^{9,11}$ ］undecane（47）．A mixture of 28 （ $41 \mathrm{mg}, 0.18$ $\mathrm{mmol}), \mathrm{ZnCl}_{2}(300 \mathrm{mg}, 2.20 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL}, 2.15 \mathrm{mmol})$ ，and TMSCl（ $0.3 \mathrm{~mL}, 2.37 \mathrm{mmol}$ ）in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was heated for 24 h at $160^{\circ} \mathrm{C}$ in a sealed tube．After dilution with $\mathrm{Et}_{2} \mathrm{O}$ ，the mixture was washed with $5 \% \mathrm{HCl}$ ，saturated NaHCO_{3} ，and brine，dried，and evaporated．The residue was treated for 30 min at room temperature with $10 \% \mathrm{HClO}_{4}$－THF（ $1: 1 \mathrm{v} / \mathrm{v}, 5 \mathrm{~mL}$ ）．After dilution with $\mathrm{Et}_{2} \mathrm{O}$ ，the mixture was washed with saturated NaHCO_{3} and brine，dried，and evaporated to give a residue，which was subjected to chromatography on silica gel．Elution with AcOEt－hexane（1：9 v／v）provided $47(16 \mathrm{mg}$ ， 39% ）as a colorless oil：IR（neat， cm^{-1} ） 3500,$1735 ;{ }^{1} \mathrm{H}$ NMR（ 500 MHz ， $\left.\mathrm{CDCl}_{3}\right) \delta 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=6.7,6.7$ $\mathrm{Hz}, 1 \mathrm{H}$ ）， 2.14 （ddd，$J=13.5,5.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ）， 1.86 （br s， 1 H ），1．84－1．44 （m， 8 H ）， 1.18 （ddd，$J=10.6,9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.71$（dddd，$J=8.4,8.4$ ， $4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.12$（ddd，$J=4.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（ 125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) 173.1,83.0,60.4,51.5,50.6,42.5,41.0,31.3,31.1$ ， $29.1,26.3,18.5,12.1 ; \mathrm{MS} m / z\left(\mathrm{M}^{+}\right)$calcd 222.1256 ，obsd 222.1262 ．
（ \pm ）－（ $\left.1 R^{*}, 2 S^{*}, 3 S^{*}, 7 R^{*}, 9 S^{*}, 11 S^{*}\right)$－1－Acetoxy－2－（methoxycarbonyl）－ tetracyclo［5．4．0．0 ${ }^{3,7} .0^{9,11}$ ］undecane（48）．A mixture of 47 （ $8 \mathrm{mg}, 0.035$ mmol），DMAP（ $1 \mathrm{mg}, 0.008 \mathrm{mmol}$ ），and $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{~mL}, 2.12 \mathrm{mmol})$ in pyridine（ $0.5 \mathrm{~mL}, 6.19 \mathrm{mmol}$ ）was stirred for 48 h at room temperature． The mixture was partitioned at $0^{\circ} \mathrm{C}$ between $\mathrm{Et}_{2} \mathrm{O}$ and $5 \% \mathrm{HCl}$ ．The organic phase was washed with brine，dried，and evaporated．Chroma－ tography of the residue on silica gel with AcOEt－hexane（1：9 v／v）as eluent gave 48 （ $7 \mathrm{mg}, 75 \%$ ）as a colorless oil：IR（neat， cm^{-1} ） $1735 ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ） $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.72-0.68(\mathrm{~m}, 1 \mathrm{H}), 0.13$ （dd，$J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ）；MS $m / z\left(\mathrm{M}^{+}\right)$calcd 264.1362 ，obsd 264.1386.

Treatment of 11 with TBDMSOTf and $\mathrm{Et}_{3} \mathbf{N}$ ．To a stirred solution of $11(15 \mathrm{mg}, 0.067 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.093 \mathrm{~mL}, 0.67 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.3 \mathrm{~mL})$ was added at room temperature TBDMSOTf $(0.077 \mathrm{~mL}, 0.33$ mmol ），and the mixture was stirred for 30 min at room temperature． After dilution with $\mathrm{Et}_{2} \mathrm{O}$ ，the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine， dried，and evaporated to give a residue，which was subjected to chromatography on silica gel．Elution with $\mathrm{Et}_{2} \mathrm{O}$－hexane（ $1: 20 \mathrm{v} / \mathrm{v}$ ） containing $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{v} / \mathrm{v} \%)$ afforded a 1：1．3 mixture of (E)－and（ Z ）－49 （ $21 \mathrm{mg}, 93 \%$ ）as a colorless oil：IR（neat， cm^{-1} ） $1740,1665,1660 ;{ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）$\delta 5.59-5.45$（m，2H）， 4.81 （ddd，$J=7.5,3.5$ ， $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1.3 \mathrm{H}), 3.67(\mathrm{~s}, 1.7 \mathrm{H}), 3.09(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 0.9 \mathrm{H})$ ， 3.03 （dd，$J=6.5,1.5 \mathrm{~Hz}, 1.1 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.30(\mathrm{~m}, 6 \mathrm{H})$ ， $0.93(\mathrm{~s}, 5 \mathrm{H}), 0.91(\mathrm{~s}, 4 \mathrm{H}), 0.124(\mathrm{~s}, 3.4 \mathrm{H}), 0.120(\mathrm{~s}, 2.6 \mathrm{H}) ;$ MS m / z （ M^{+}）calcd 338．2275，obsd 338．2290．
（ \pm ）－（ $\left.1 R^{*}, 2 S^{*}, 3 S^{*}, 7 R^{*}\right)$－2－（Methoxycarbonyl）－1－（trimethylsiloxy）－ tricyclo［5．4．0．0 $0^{3.7}$ ］undecane（51）．（A）To a solution of（E）－11（40 mg， $0.18 \mathrm{mmol})$ and（TMS）${ }_{2} \mathrm{NH}(0.05 \mathrm{~mL}, 0.27 \mathrm{mmol})$ in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ $(1.2 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ TMSI（ $0.03 \mathrm{~mL}, 0.21 \mathrm{mmol}$ ），and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and for 7 h at room temperature． After dilution with $\mathrm{Et}_{2} \mathrm{O}$ ，the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine， dried，and evaporated．Chromatography of the residue on silica gel with $\mathrm{Et}_{2} \mathrm{O}$－hexane（ $1: 20 \mathrm{v} / \mathrm{v}$ ）containing $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{v} / \mathrm{v} \%)$ as eluent gave 51 （ 37 $\mathrm{mg}, 70 \%$ ）as a colorless oil：IR（neat， cm^{-1} ） $1730 ;{ }^{1} \mathrm{H}$ NMR（ 500 MHz ， $\left.\mathrm{CDCl}_{3}\right) \delta 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=7.9,4.9$ $\mathrm{Hz}, 1 \mathrm{H}$ ）， 2.27 （ddd，$J=13.6,7.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.28$（m，12H）， 1.13 （ddd，$J=13.4,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（ 125 MHz ， $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) 173.4,76.2,52.9,51.1,38.7,35.0,34.0,32.1,30.7,25.3$ ， 22．6，19．9，1．9；MS $m / z\left(\mathrm{M}^{+}\right)$calcd 296．1806，obsd 296.1804.
（B）Similarly，（Z）－11（ $50 \mathrm{mg}, 0.22 \mathrm{mmol}$ ）was converted，using
(TMS) $)_{2} \mathrm{NH}(0.071 \mathrm{~mL}, 0.33 \mathrm{mmol})$ and TMSI ($\left.0.038 \mathrm{~mL}, 0.27 \mathrm{mmol}\right)$ in $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (1.3 mL), into $\mathbf{5 1}(\mathbf{4 5} \mathrm{mg}, 68 \%$), which was identical with the above sample in all respects.
(\pm)-($1 R^{*}, 2 R^{*}, 3 S^{*}, 7 R^{*}$)-1-Hydroxy-2-(hydroxymethyl)tricyclo[5.4.0.03.7]undecane (52). Reduction of 51 ($150 \mathrm{mg}, 0.51 \mathrm{mmol}$) with 0.93 M DIBALH-hexane ($1.2 \mathrm{~mL}, 1.1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, followed by treatment of the product with $1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NF}(0.68 \mathrm{~mL}, 0.68$ mmol) in THF (4 mL) as above and chromatography on silica gel, with AcOEt-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) as eluent, yielded 52 ($84 \mathrm{mg}, 85 \%$ overall yield) as colorless crystals, mp $122-123^{\circ} \mathrm{C}$: IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3400 ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.74(\mathrm{dd}, J=11.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=11.0$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.24$ (ddd, $J=13.6,8.1$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95 (ddd, $J=9.2,7.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.66(\mathrm{~m}, 5 \mathrm{H})$, 1.65-1.18 (m, 9 H); MS $m / z\left(\mathrm{M}^{+}\right)$196. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 73.43; H, 10.27. Found: C, 73.48; H, 10.43 .
(\pm)-($\left.1 R^{*}, 2 S^{*}, 3 S^{*}, 7 R^{*}\right)$-1-Hydroxy- 2 -[(phenylthio) methyl]tricyclo[5.4.0.03.7]undecane (53). A mixture of $52(60 \mathrm{mg}, 0.31 \mathrm{mmol}), \mathrm{Bu}_{3} \mathrm{P}$ $(0.23 \mathrm{~mL}, 0.92 \mathrm{mmol})$, and $(\mathrm{PhS})_{2}(200 \mathrm{mg}, 0.92 \mathrm{mmol})$ in dry pyridine $(0.25 \mathrm{~mL})$ was stirred for 1.5 h at room temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with $10 \% \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried, and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 3 \mathrm{v} / \mathrm{v}$) afforded $53(86 \mathrm{mg}$, 98%) as a yellowish oil: IR (neat, cm^{-1}) $3400,{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=12.2,7.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.95 (dd, $J=12.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (ddd, $J=13.4,7.9,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.97$ (dd, $J=15.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.55(\mathrm{~m}, 10 \mathrm{H}), 1.50-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.41-1.21(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) 137.1, 129.0, 128.9, 125.8, 72.8, 52.5, 48.6, 43.0, 34.7, 33.6, 32.7, 32.4, 30.5, 25.9, 23.3, 20.1; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 288.1547, obsd 288.1527.
(\pm)-($\left.1 R^{*}, 2 R^{*}, 3 S^{*}, 7 R^{*}\right)$-1-Hydroxy-2-methyltricyclo [5.4.0.03.7]]undecane (54). To a mixture of 53 ($86 \mathrm{mg}, 0.30 \mathrm{mmol}$) and THF-But$\mathrm{OH}(10: 1 \mathrm{v} / \mathrm{v}, 3.3 \mathrm{~mL})$ in liquid $\mathrm{NH}_{3}(50 \mathrm{~mL})$ was added at $-34^{\circ} \mathrm{C} \mathrm{Li}$ ($50 \mathrm{mg}, 7.2 \mathrm{mmol}$), and the mixture was stirred for 5 min at $-34^{\circ} \mathrm{C}$. After addition of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{mg})$, followed by evaporation of the liquid NH_{3}, the residue was taken up into $\mathrm{Et}_{2} \mathrm{O}$. The organic solution was washed with $10 \% \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried, and evaporated. Chromatography of the residue on silica gel with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 4 \mathrm{v} / \mathrm{v}$) as eluent provide 54 ($45 \mathrm{mg}, 85 \%$) as a colorless solid, $\mathrm{mp} 63-64^{\circ} \mathrm{C}$: IR (neat, cm^{-1}) 3370 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.13$ (ddd, $J=$ $14.0,7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.44(\mathrm{~m}, 11 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.21$ (dd, $J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) 72.5,53.0,44.3,43.7,34.7,32.6,32.2,29.8,26.0,23.4$, 20.3, 12.6; MS m / z (M^{+}) calcd 180.1513, obsd 180.1528.
(\pm)-($\left.1 R^{*}, 25^{*}, 3 R^{*}, 6 S^{*}, 85^{*}\right)$-2-(Methoxycarbonyl)-3-(trimethylsiloxy)tricyclo[4.2.1.0 ${ }^{3.8}$]nonane (55). To a stirred solution of $7(40 \mathrm{mg}, 0.20$ mmol) and (TMS) ${ }_{2} \mathrm{NH}(0.065 \mathrm{~mL}, 0.31 \mathrm{mmol})$ in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (1 mL) was added at $0^{\circ} \mathrm{C}$ TMSI ($0.035 \mathrm{~mL}, 0.25 \mathrm{mmol}$), and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and for 22 h at room temperature. After a workup similar to that described in the preparation of 51, chromatography on silica gel with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 30 \mathrm{v} / \mathrm{v}$) containing $\mathrm{Et}_{3} \mathrm{~N}$ (3 $\mathrm{v} / \mathrm{v} \%$) provided 55 ($31 \mathrm{mg}, 57 \%$) as a colorless oil: IR (neat, cm^{-1}) 1735; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.92$ (dd, $J=7.4,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=7.4,7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (ddd, $J=8.2,8.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), $1.98-1.92$ (m, 1H), $1.80(\mathrm{~d}, J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.68$ (dddd, $J=12.5,7.4,4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) ;$ MS m / z (M^{+}) calcd 268.1493, obsd 268.1515.
($\left.1 \mathbf{R}^{*}, 55^{*}, 65^{*}, 75^{*}\right)$-7-(Methoxycarbonyl)-6-methyl-6-(trimethylsiloxy)bicyclo[3.2 .0]heptane (56). To a stirred solution of 13 ($115 \mathrm{mg}, 0.63$ mmol) and (TMS) ${ }_{2} \mathrm{NH}\left(0.197 \mathrm{~mL}, 0.94 \mathrm{mmol}\right.$) in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ $(2.8 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ TMSI ($0.107 \mathrm{~mL}, 0.75 \mathrm{mmol}$), and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and for 2 h at room temperature. After the same workup as above, the product was purified by silica gel chromatography. Elution with $\mathrm{Et}_{2} \mathrm{O}$-hexane ($1: 10 \mathrm{v} / \mathrm{v}$) containing $\mathrm{Et}_{3} \mathrm{~N}$ ($3 \mathrm{v} / \mathrm{v}$) gave a $6.8: 1.3: 1: 1$ mixture ($132 \mathrm{mg}, 83 \%$), the major component being 56, which was isolated by preparative TLC: IR (neat, cm^{-1}) 1730; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 3.44$ (s, 3H), 2.91 (ddd, $J=6.8,6.8,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (ddd, $J=6.8,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.18-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{ppm}\right) 172.4,73.6,55.1,50.7,50.6,34.3,32.0,26.6,26.4,26.2,2.0 ;$ MS $m / z\left(\mathrm{M}^{+}\right)$calcd 256.1493 , obsd 256.1489.
 oxycarbonyl)-6-(trimethylsiloxy) bicyclo[3.2 .0]heptane (57 and 58). To a stirred solution of $33(50 \mathrm{mg}, 0.25 \mathrm{mmol})$ and (TMS) ${ }_{2} \mathrm{NH}(0.08 \mathrm{~mL}$, $0.38 \mathrm{mmol})$ in dry $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}(1.3 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ TMSI $(0.043 \mathrm{~mL}, 0.30 \mathrm{mmol})$, and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$
and for 1.5 h at room temperature. The same workup as above, followed by chromatography of the product on silica gel with $\mathrm{Et}_{2} \mathrm{O}$-hexane (1:20 v / v) containing $\mathrm{Et}_{3} \mathrm{~N}(3 \mathrm{v} / \mathrm{v} \%)$ as eluent, afforded a $2: 1$ mixture of 57 and 58 ($62 \mathrm{mg}, 91 \%$), which were separable by preparative TLC.
Data for 57: IR (neat, cm^{-1}) $1730 ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 3.45$ $(\mathrm{s}, 3 \mathrm{H}), 2.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (ddd, $J=13.2,8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.51$ (ddd, $J=9.4,6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.41 (s, 3 H), 1.22 (ddd, $J=13.2,9.2$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.04 (s, 3H), 0.28 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, $\mathrm{ppm})$ 172.5, 76.6, 54.8, 53.1, 50.6, 41.4, 35.2, 31.6, 26.9, 22.4, 21.8, 2.1; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 270.1650 , obsd 270.1643.
Data for 58: IR (neat, cm^{-1}) 1740 ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 3.58 (s, 3 H), $3.08(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.57-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H})$; MS $m / z\left(\mathrm{M}^{+}\right)$calcd 270.1650, obsd 270.1664.
($1 S^{*}, 5 S^{*}, 6 S^{*}, 7 R^{*}$)-6-Hydroxy-7-(hydroxymethyl)-6-methylbicyclo[3.2.0]heptane (59). To a stirred solution of $56(25 \mathrm{mg}, 0.098 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C} 0.93 \mathrm{M}$ DIBALH-hexane ($0.26 \mathrm{~mL}, 0.24 \mathrm{mmol}$), and the mixture was stirred for 1 h . After additions of $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.26 \mathrm{~mL})$, the mixture was stirred for 1 h at room temperature. The organic solution was dried and evaporated to give a residue, which was used in the following reaction without purification.
A mixture of the product (22 mg) and $1 \mathrm{M} \mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{NF}-\mathrm{THF}(0.125 \mathrm{~mL}$, 0.125 mmol) in THF (0.5 mL) was stirred for 30 min at room temperature. After dilution with AcOEt, the mixture was washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, dried, and evaporated. Chromatography on silica gel with AcOEt-hexane ($1: 1 \mathrm{v} / \mathrm{v}$) as eluent gave 59 ($14 \mathrm{mg}, 92 \%$ overall yield) as a colorless solid, $\mathrm{mp} 103-104^{\circ} \mathrm{C}$: IR (neat, cm^{-1}) 3375 ; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.75$ (ddd, $J=10.4,8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62$ (ddd, $J=10.4,6.1,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (dd, $J=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{brt}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ calcd 138.1044, obsd 138.1051.
($15^{*}, 5 S^{*}, 6 R^{*}, 7 R^{*}$)-5,6-Dimethyl-6-hydroxy-7-(hydroxymethyl)bicyclo[3.2.0]heptane (60). Reduction of 57 ($60 \mathrm{mg}, 0.23 \mathrm{mmol}$) with 0.93 M DIBALH-hexane ($0.63 \mathrm{~mL}, 0.59 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, followed by treatment of the product (55 mg) with $1 \mathrm{M} \mathrm{Bu}{ }^{\mathrm{n}} 4 \mathrm{NF}-\mathrm{THF}$ (0.32 mL , 0.32 mmol) in THF (1.5 mL) and purification as above, provided 60 (34 $\mathrm{mg}, 93 \%$) as a colorless solid, $\mathrm{mp} 101-102^{\circ} \mathrm{C}$: IR (neat, cm^{-1}) 3350 ; ${ }^{1}{ }^{1}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.71(\mathrm{dd}, J=11.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (dd, $J=11.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.14 (ddd, $J=13.4,7.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.00 (br s, 1H), 1.92 (dt, $J=6.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.89-1.79 (m, 1 H), 1.73 (br $\mathrm{s}, 1 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{dt}$, $J=13.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{MS} m / z\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ calcd 152.1200, obsd 152.1223.
X-ray Crystallographic Study of 52. A crystal with dimensions of 0.20 $\times 0.10 \times 0.25$ was used for the data collection on a Rigaku automated four-circle diffractometer, equipped with a rotating anode ($50 \mathrm{kV}, 200$ mA) and using graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71069$ $\AA \AA$). Crystal data are as follows: molecular formula $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{2}$; molecular weight 196.1; monoclinic space group $C c ; a=8.615$ (1) $\AA, b=11.584$ (2) $\AA, c=21.706(3) \AA, \beta=92.89(1)^{\circ} ; V=2163.4(7) \AA^{3} ; Z=8 ; D_{\mathrm{c}}=1.205$ $\mathrm{g} / \mathrm{cm}^{3} ; \mu(\mathrm{Mo} \mathrm{K} \alpha)=0.74 \mathrm{~cm}^{-1} ;$ total of 2871 reflections within $2 \theta=55^{\circ}$. The structure was solved by the direct method using a RANTAN 81 program with some modification. After the block-diagonal least-squares refinement for non-hydrogen atoms with anisotropic temperature factors, the hydrogen atoms were calculated geometrically and also verified from the difference Fourier map and then included in the refinement with isotropic temperature factors. The final R factor was 0.076 ($R_{w}=0.071$) for 1886 reflections with $\left|F_{0}\right|>2 \sigma\left(\left|F_{0}\right|\right)$.

Acknowledgment. We thank Professor M. A. Ciufolini of Rice University for fruitful discussions. We are indebted to Mr. K. Kawamura, Miss K. Mushiake, Miss M. Inada, Mrs. A. Satoh, and Miss Y. Maehashi, Pharmaceutical Institute, Tohoku University, for microanalysis, spectral measurements, and the preparation of the manuscript, and Mr. K. Sasaki, Instrumental Analysis Center for Chemistry, Faculty of Science, Tohoku University, for NOE measurements.

Supplementary Material Available: Listings of final atomic coordinates, bond distances and angles, and thermal parameters for 52 and ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of products of the tandem Michael-aldol reactions (17 pages). Ordering information is given on any current masthead page.

[^0]: \$ Pharmaceutical Institute, Tohoku University.
 ${ }^{t}$ Instrumental Analysis Center of Chemistry, Tohoku University.
 (1) Banfield, J. E.; Black, D. St. C.; Johns, S. R.; Willing, R. I. Aust. J. Chem. 1982, 35, 2247-2256. Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E.; Uenishi, J. J. Am. Chem. Soc. 1982, 104, 5555-5557. Nicolaou, K. C.; Petasis, N. A.; Uenish, J.; Zipkin, R. E. J. Am. Chem. Soc. 1982, 104, 5557-5558. Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J. Am. Chem. Soc. 1982, 104, 5558-5560. Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. J. Am. Chem. Soc. 1982, 104, 5560-5562.
 (2) Ghisalberti, E. L.; Jefferies, P. R.; Sheppard, P. Tetrahedron Lett. 1975, 1775-1778. Croft, K. D.; Ghisalberti, E. L.; Jeffries, P. R.; Marshall, D. G.; Raston, C. L.: White, A. H. Aust. J. Chem. 1980. 33, 1529-1536. Greenlee, M. L. J. Am. Chem. Soc. 1981, 103, 2425-2426. Dauben, W. G.; Shapiro, G. J. Org. Chem. 1984, 49, 4252-4258.
 (3) Fattoarusso, E.; Lanzotti, V.; Magno, S.; Mayol, L.; Pansini, M. J. Org. Chem. 1992, 57, 6921-6924.
 (4) Leimner, J.; Marschall, H.; Meier, N.; Weyerstahl, P. Chem. Lett. 1984, 1769-1772. Honda, T.; Ueda, K.; Tsubuki, M.; Toya, T.; Kurozumi, A. J. Chem. Soc., Perkin Trans. I 1991, 1749-1754.
 (5) Beereboom, J. J. J. Am. Chem. Soc. 1963, 85, 3525-3526; J. Org. Chem. 1965, 30, 4320-4234. Bates, R. B.; Onore, M. J.; Paknikar, S. K.; Steelink, C. Chem. Commun. 1967, 1037-1038.
 (6) Wong, H. N. C.; Lau, K.-L.; Tam, K.-F. In Small Ring Compounds in Organic Synthesis I; de Meijere, A., Ed.; Springer-Verlag: Berlin, 1986; pp 83-163. Clark, R. D.; Untch, K. G.J. Org. Chem. 1979, 44, 248-253 and 253-255.
 (7) Reviews: Ihara, M.; Fukumoto, K. J. Synth. Org. Chem., Jpn. 1986, 44,96-108; Angew. Chem., Int. Ed. Engl. 1993, in press.
 (8) Ihara, M.; Toyota, M.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1984, 25, 2167-2170. Ihara, M.; Suzuki, M.; Fukumoto, K.; Kametani, T.; Kabuto, C. J. Am. Chem. Soc. 1988, 110, 1963-1964. Ihara. M.; Suzuki, M.; Fukumoto, K.; Kabuto, C. J. Am. Chem. Soc. 1990, 112, 1164-1171.
 (9) Ihara, M.; Kirihara, T.; Kawaguchi, A.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1984, 25, 4541-4544. Ihara, M.; Takahashi, T.; Shimizu, N.; Ishida, Y.; Sudow, I.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1987, 1467-1468. Ihara, M.; Katogi, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1987, 721-722.
 (10) Ihara, M.; Tsuruta, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Chem. Commun. 1985, 1159-1161. Ihara, M.; Ishida, Y.; Fukumoto, K.; Kametani, T. Chem. Pharm. Bull. 1985, 33, 4102-4105. Ihara, M.; Takino, Y.; Fukumoto, K.; Kametani, T. Tetrahedron Lett. 1988, 29, 4135-4138. Ihara, M.; Suzuki, S.; Taniguchi, N.; Fukumoto, K.; Kabuto, C. J. Chem. Soc., Chem. Commun. 1991, 1168-1169.

[^1]: (11) A part of this work has been published as a preliminary communication: Ihara, M.; Ohnishi, M.; Takano, M.; Makita, K.; Taniguchi, N.; Fukumoto, K. J. Am. Chem. Soc. 1992, 114, 4408-4410.
 (12) Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4025-4028.
 (13) Freppel, C.; Poirier, M.-A.; Richer, J.-C.; Maroni, Y.; Mannuel, G. Can. J. Chem. 1974, 52, 4133-4138.
 (14) Agosta, W. C.; Smith, A. B., III. J. Am. Chem. Soc. 1971, 93, 55135520.
 (15) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
 (16) Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188-196.

[^2]: ${ }^{a}$ Materials and conditions: (a) Li , liquid $\mathrm{NH}_{3}, \mathrm{Bu}^{\mathrm{t}} \mathrm{OH}$, then aqueous ($\mathrm{CO}_{2} \mathrm{H}$) ; (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$; (c) PCC ; (d) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$; (e) [2-(2,6dioxanyl)ethyl]magnesium bromide, $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$, TMSCl, HMPA; (f) dilute $\mathrm{HCl} ;(\mathrm{g}) \mathrm{NaBH}_{4}$; (h) dilute HClO_{4}; (i) Dess-Martin periodinane; (j) pyrrolidine, PTSA, then allyl bromide; (k) LDA, MoOPH; (l) $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{MeOH}$, then $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH} ;(\mathrm{m}) \mathrm{KOH} ;(\mathrm{n})(\mathrm{COCl})_{2}$, pyridine; (o) $\mathrm{CH}_{2} \mathrm{~N}_{2}$; (p) Cu ; (q) dilute AcOH; (r) LDA, HMPA, 4,4dimethoxybutyl bromide; (s) aqueous $\left(\mathrm{CO}_{2} \mathrm{H}\right)_{2} ;(\mathrm{t})\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{POCH}_{2}-$ $\mathrm{CO}_{2} \mathrm{Me}, \mathrm{KN}(\mathrm{TMS})_{2}, 18$-crown-6; (u) DIBALH; (v) MeMgI.

[^3]: (17) Beames, D. J.; Halleday, J. A.: Mander, J. N. Aust. J. Chem. 1972,

[^4]: (20) Emde. H.; Domsh, D.; Feger, H.; Frick, U.; Gōtz, A.; Hergott, H.; Hofmann. K.: Kober. W.; Krägeloh, K.; Oesterle, T.;Steppan, W.; West, W.; Simchen, G. Synthesis 1982, 1-26. Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25. 5953-5956.
 (21) Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 78077808.

